
MATH 280 Multivariate Calculus Fall 2010

Notes on vector curve integrals

Definition of line integral

We are given a vector field ~F and an oriented curve C in the domain of ~F as
shown in the figure on the left below. The general idea of a vector curve integral is

add up over the curve small contributions each having the form
(component of ~F tangent to C) times (length of piece of C).

As usual, we will represent an infinitesimal displacement along the curve by d~r. A
sample of these is shown as red vectors in the figure on the right below. The same
figure also shows a sample vector field outputs along the curve (as blue vectors). For

each point on the curve, there is an angle θ between the vector field output ~F and
the infinitesimal displacement d~r as shown in the below. In geometric terms, the dot
product ~F · d~r can be thought of as

~F · d~r = ‖~F‖‖d~r‖ cos θ = ‖~F‖ds cos θ =
(
‖~F‖ cos θ

)
ds.

Note that ‖~F‖ cos θ is the component of ~F tangent to the curve and ds is the length
of an infinitesimal piece of the curve. So, we can think of a vector curve integral as

add up over the curve small contributions each having the form ~F · d~r.

We will denote this type of integral as

∫
C

~F · d~r.

drÓ

F

Θ



Notation

The text often uses an alternate notation for the line integral. Here’s the con-
nection: We can denote the magnitude of the (infinitesimal) displacement vector d~r
by ds = ‖d~r‖. The displacement vector d~r is tangent to the curve (at a particular

point), so we can denote the direction by ~T . That is, ~T is a unit vector tangent to

the curve (at a point). In terms of magnitude and direction, we can write d~r = ~T ds.
With this, we can denote a line integral by∫

C

~F · d~r or

∫
C

~F · ~T ds.

I generally use the first notation while the text favors the second.
There is another very common notation in use. Here’s the connection: Write

the vector field ~F in terms of components as ~F = M ı̂ + N ̂ + P k̂ and write the
vector d~r in terms of components as d~r = dx ı̂ + dy ̂ + dz k̂. Here, think of dx as a
small displacement parallel to the x-axis, dy as a small displacement parallel to the
y-axis, and dz as a small displacement parallel to the z-axis. With these component
expressions, we can write out the dot product as

~F · d~r =
(
M ı̂+N ̂+ P k̂

)
·
(
dx ı̂+ dy ̂+ dz k̂

)
= M dx+N dy + P dz.

Using this, the notation for line integral can be written∫
C

~F · d~r =

∫
C

M dx+N dy + P dz.

Some texts favors the expression on the right side and I generally use the expression
on the left side.

Some of the problems are given using the notation on right side. For example,
Problem 17 of Section 14.2 gives the line integral∫

C

xy dx+ (x+ y) dy.

From this, you can read off that the vector field is ~F = xy ı̂+ (x+ y) ̂.

Computing line integrals

In computing line integrals, the general plan is to express everything in terms of a
single variable. This is a reasonable thing to do because a curve is a one-dimensional
object. The essential things are to determine the form of d~r for the curve C and the
outputs ~F along the curve C, all in terms of one variable. The displacement d~r is
defined to have components

d~r = dx ı̂+ dy ̂

How to proceed depends on how we describe the curve. In general, we have two
choices: a relation between the coordinates or a parametric description. The two
solutions to the following example show how to work with each of these.
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Example: Compute the line integral of ~F (x, y) = 3 ı̂+ 2 ̂ for the curve C that is the
upper half of the circle of radius 1 traversed from left to right.

Solution 1:
We start by making a plot showing the curve, a sample of infinitesimal displace-

ments, and a sample of vector field outputs along the curve as shown below.

-1 1
x

1

y

The equation of the circle is x2 + y2 = 1. From this, we compute

2x dx+ 2y dy = 0.

Solving for dy and substituting from x2 + y2 = 1 gives

dy = −x
y
dx = − x√

1− x2
dx.

This is the relation between dx and dy for a displacement d~r along the circle. Sub-
stituting this gives

d~r = dx ı̂+ dy ̂ = dx ı̂− x√
1− x2

dx ̂ =

(
ı̂− x√

1− x2
̂

)
dx

(Note that this expression is undefined for x = ±1. This will not affect the value we
compute for the integral because this is a finite set of points and not an interval of
values. The method below avoids this issue.)

The vector field here is constant so all outputs along the curve C are ~F = 3ı̂+ 2̂.
We thus have

~F · d~r =
(

3 ı̂+ 2 ̂
)
·

(
ı̂− x√

1− x2
̂

)
dx =

(
3− 2x√

1− x2

)
dx

This is the integrand. For the curve C, the variable x ranges from −1 to 1, so we
have ∫

C

~F · d~r =

∫ 1

−1

(
3− 2x√

1− x2

)
dx = some work to be done here = 6.

Solution 2: We use polar coordinates to write

x = cos θ and y = sin theta for θ from π to 0.
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Note that having θ range from π to 0 that this traces out the curve C in the correct
direction (from left to right). From these, we compute

dx = − sin θ dθ and dy = cos θ dθ.

Substituting into d~r gives

d~r = dx ı̂+ dy ̂ = − sin θ dθ ı̂+ cos θ dθ̂ =
(
− sin θ ı̂+ cos θ̂

)
dθ.

The vector field here is constant so all outputs along the curve C are ~F = 3 ı̂+2 ̂.
We thus have

~F · d~r =
(
3 ı̂+ 2 ̂

)
·
(
− sin θ ı̂+ cos θ ̂

)
dθ =

(
−3 sin θ + 2 cos θ

)
dθ.

This is the integrand. For the curve C, the variable θ ranges from π to 0, so we have∫
C

~F · d~r =

∫ 0

π

(
−3 sin θ + 2 cos θ

)
dt = some work to be done here = 6.

More on notation

For many problems in the text, the curve C is given as a function

~r(t) = x(t) ı̂+ y(t) ̂ for a curve in the plane

or
~r(t) = x(t) ı̂+ y(t) ̂+ z(t) k̂ for a curve in space.

For example, Problem 9 involves a curve C2 given by

~r(t) = t ı̂+ t2 ̂+ t4 k̂ for 0 ≤ t ≤ 1

We can read off from this that x, y, and z for points on the curve are given by

x = t, y = t2, and z = t4 for 0 ≤ t ≤ 1

To get d~r in terms of the variablel t, we compute

dx = dt, dy = 2t dt, and dz = 4t3 dt

and then substitute to get

d~r = dx ı̂+ dy ̂+ dz k̂ = dt ı̂+ 2t dt ̂+ 4t3 dt k̂ =
(
ı̂+ 2t ̂+ 4t3 k̂

)
dt

Note that we could also get this by directly “d-ing” both sides of

~r(t) = t ı̂+ t2 ̂+ t4 k̂.
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